Reference Data

Complete Assignment of ¹H and ¹³C NMR Spectra of Ikarisoside A and Epimedoside C

Wen-Kui Li,1* Pei-Gen Xiao and Jing-Qi Pan2

- ¹ Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China.
- ² School of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Received 17 April 1997; accepted 14 June 1997

ABSTRACT: The complete assignment of the proton and carbon NMR spectra for ikarisoside A and epimedoside C from the aerial parts of *Epimedium koreanum* were achieved using the concerted application of one- and two-dimensional NMR techniques including COSY and HMBC spectroscopy. The parameters previously reported in the literature were found to be incorrect or incomplete. © 1997 John Wiley & Sons, Ltd.

KEYWORDS: ikarisoside A; epimedoside C; NMR; ¹H NMR; ¹³C NMR

INTRODUCTION

During the course of our investigations on the chemical composition of the aerial parts of *Epimedium koreanum*, ^{1,2} a herb native to northeast China, we isolated from the EtOAc fraction some desmethylanhydroicaritin glycosides. Their structural elucidation was mainly based on the comparison with literature reported previously. ^{3,4} Recently, within the context of further NMR studies on these glycosides, the complete ¹H and ¹³C chemical shift assignments were derived for ikarisoside A (1) and epimedoside C (2). Although ¹H and ¹³C NMR spectra of these compounds have been reported previously, the proposed assignments ^{1–4} are incorrect or incomplete. The use of two-dimensional NMR techniques permitted us to obtain unambiguous assignments of chemical shifts for these molecules.

R_1		R_2	
1	Rha	Н	
2	Н	Glc	

^{*} Correspondence to: W.-K. Li, at the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China.

RESULTS AND DISCUSSION

The ¹³C NMR spectra of 1 and 2 present well resolved resonances. Assignments of carbons in sugar moieties was trivial on the basis of comparison with the data previously reported.^{3,4} However, it is difficult to assign precisely the chemical shifts of C-5, C-7, C-4' and CH₃ in the prenyl groups, owing to their similar chemical environments. Therefore, assignment of their 13C resonances was achieved by concerted application of two-dimensional chemical shift correlation experiments. The starting points of the assignments were the unique ¹H resonance of the hydroxy groups at C-5, C-7, C-4', and methyl groups at C-14, C-15. One-bond proton-carbon chemical shift correlations were established using a standard 2D sequence (HETCOR)5, providing the identifications of the responces and giving assignments of C-14 and C-15. By utilizing the contour plots of the long-range heteronuclear multiple bond connectivity (HMBC)⁶ experiments, the umbiguous assignment of C-5, C-7 and C-4' was made. ¹³C NMR chemical shifts data for the aglycone moieties of 1 and 2 are given in Table 1 and ¹H NMR chemical shifts of the aglycone moieties obtained from heteronuclear correlation diagrams are presented in Table 2. Our assignments are largely in agreement with those previously reported, 1-4 however,

Table 1. 13 C NMR data (δ , ppm) for aglycone moieties of compounds 1 and 2

Position	1	2
2	157.2	147.5
3	134.1	135.8
4	178.0	176.4
5	158.9	158.6
6	98.3	97.4
7	161.4	160.1
8	105.9	108.1
9	153.7	152.7
10	104.2	104.5
11	21.2	21.5
12	122.4	122.5
13	131.0	131.0
14	25.4	25.5
15	17.5	17.9
1′	120.7	121.9
2', 6'	130.5	129.6
3', 5'	115.4	115.5
4′	160.0	159.4

Table 2. 1 H NMR data (δ , ppm) for aglycone moieties of compounds 1 and 2

Position	1	2
6	6.61	6.59
2', 6'	7.76	8.06
3', 5'	6.94	6.94
11	3.33, 3.45	3.21, 3.56
12	5.14	5.20
14	1.61	1.62
15	1.66	1.76
3-OH		9.52
5-OH	12.55	12.47
7-OH	10.83	
4'-OH	10.23	10.19

Reference Data

the ¹³C NMR signals for C-5, C-7, C-4', C-14 and C-15 in both 1 and 2 have to be reversed.

EXPERIMENTAL

Compounds 1 and 2 were obtained from *Epimedium koreanum*. Their isolation and purification have been reported.^{1,2}

All NMR spectra were recorded on a Bruker ARX-400 spectrometer in DMSO- d_6 solutions; tetramethylsilane (TMS) was used as an internal standard. The heteronuclear two-dimensional $^1\mathrm{H}^{-13}\mathrm{C}$ chemical shift correlation spectra were obtained with $^{13}\mathrm{C}$ detection using proton decoupling in the F_1 dimension. The spectra were acquired with 4 K \times 256 data points. Spectral widths of 20 000.00 and 3921.28 Hz were employed in the F_2 ($^{13}\mathrm{C}$) and F_1 ($^{1}\mathrm{H}$) domains, respectively. Data were processed using shifted sine-bell functions for weighting in both dimensions. The refocusing delay was 3.45 ms, the mixing delay 2.3 ms and the relaxation delay 2 s.

The long-range heteronuclear multiple quatum bond connectivity (HMBC) spectra were obtained using the standard pulse sequence (INV4PLRND) in the Bruker software.⁶ The spectral widths were F_2 5813.95 Hz and F_1 21 130.62 Hz. The delays D_1 , D_2 and D_6 were set to 2.0, 3.45 and 70 ms, respectively.

References

- 1. W. K. Li, P. G. Xiao and R. Y. Zhang, Tianran Chanwu Yanjiu yu Kaifa (Natural Product Research and Development) 6(3), 4 (1994).
- W. K. Li, P. G. Xiao and R. Y. Zhang, Zhongcaoyao (Traditional Chinese Herbs and Drugs) 26, 453 (1995).
- 3. Y. S. Li and Y. L. Liu, Zhongcaoyao (Traditional Chinese Herbs and Drugs) 23, 8 (1992).
- 4. F. Li and Y. L. Liu, Acta Pharm. Sin. 23, 672 (1988).
- 5. A. Bax and G. A. Morris, J. Magn. Reson. 42, 501 (1981).
- 6. A. Bax and M. F. Summers, J. Am. Chem. Soc. 108, 2093 (1986).